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Abstract

The 13 temporal relations on time intervals developed by Allen, and
the finite temporality approach to temporal knowledge representation and
reasoning are used to build an efficient temporal reasoning framework. The
value of this framework lies in its universality, any sequence of events and
their relationships in time can be encoded and manipulated to uncover
new insights about the nature of events and their interdependencies.

Timelines of events are reimagined as stochastic processes, and proba-
bilisitic models are developed to simulate timeline generation. How often
timelines are generated by these models point to their probability, the
question of how likely is a timeline of events is considered with it being
found that one may be much more or less likely than another. A thor-
ough discussion of the model parameters is given, as well as an application
of the methods developed on real world events and timelines, taken from
the TimeBank corpus of news articles, where temporal information in the
texts is annotated.
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1 Introduction

This work initially began as a research project, undertaken in the summer pre-
ceding the current academic year, to look at the temporal relations that hold in
texts taken from the TimeBank corpus of news articles [6]. What resulted was
a program that would extract finite temporality strings, a method of temporal
knowledge representation, and a broad, superficial analysis of the temporal re-
lations that tended to hold between events that occured in the texts. The goal
of this thesis, to be considered as a continuation, is to provide a more efficient
implementation of the program used to extract finite temporality strings, having
been entirely rewritten, as well as a more in depth examination of the proba-
bilities of timelines. We look at these finite temporality strings that represent
timelines of events and develop a method for assigning probabilities to a way in
which events may play out in time.

The structure of this thesis deviates from that which is typical. The rela-
tionship between sections is not a linear one, where a review of existing work is
followed by a methodology, implementation, and evaluation. Instead each sec-
tion is related to the general topic of this thesis, being the temporal knowledge
representation method that is a finite temporality string, and is a self contained
piece of writing, however each section makes its own contribution to the idea of
timeline probabilities, setting up the next section to continue on.

The three principal sections include a review of the finite temporality ap-
proach to temporal knowledge representation and reasoning, a detailed expla-
nation of the implementation of an efficient library to represent and manipulate
finite temporality strings, and finally the introduction of a novel method of cal-
culating the probability of a timeline of events. Each section is written in a way
that facilitates it to be read individually, however reading in the order written
attempts to point to the overall goal of the project. It begins, familiarly, with an
expositionary literature review, serving as the introduction to the main concepts
of finite temporality, these concepts are then implemented in a computationally
efficient manner through the use of generators. This so far sticks to structure
generally accepted. The final section develops a novel method to assign a prob-
ability to a finite temporality string, a means of answering the question of how
likely a particular playing out of events is to happen. The departure from the
orthodox thesis outline happens here, where the focus is put on the probabilistic
nature of timelines, and how best to simulate them. While the framework that
is developed in the antecedent section is used to simulate timelines, it does not
necessarily follow, instead it is an offshoot of the topic that is explored, and has
yielded interesting results.

The question of timeline probabilities is a strange one, as one would intu-
itively think that one particular timeline of events is just as likely to occur as



another. A deeper investigation reveals that this is not necessarily the case,
and depending on the context, a set of events are much more likely to play out
in one way than another. This question is the general version of the question
answered in [3], which looks at prior probabilities of individual Allen relations
between events. The peculiarity of this question begs further study, and being
the main motivation for this thesis, it is a topic upon which we shed some light.

1.1 Contributions

This thesis makes the following contributions to temporal knowledge represen-
tation and reasoning;:

e An efficient temporal reasoning framework in python for the creation and
manipulation finite temporality strings.

e An extension to the work of Fernando and Vogel [3|, which answers the
question of probabilities of Allen relations, providing a method to answer
the more general question of what is the probability of a timeline?



The clock tick tocks and...
Things change, time passes, death happens.

— Tanya Davis, Fulogy for You and Me



2 A Review of Finite Temporality

Living things are, to varying degrees, aware of the concept of time. We humans
ourselves, are equipped with a deep appreciation of time and its passing, often
motivated perhaps by our hyper-awareness of mortality. We can reason tempo-
rally and understand the relationships between events as they happen in time.
However, the wildebeasts, gazelles, and zebras that roam the plains of Africa,
for example, may not necessarily embody such a high regard for the progression
of time and the interplay of events within it, yet they still understand that every
year, they must participate in the Great Migration, that takes them from the
Serengeti of Tanzania to the Masai Mara in Kenya.

Focusing on humans, Brackbill and Fitzgerald |2]| have shown that around
the age of one month, toddlers have already developed, what we label as, a
sense of time. By placing infants in a room where a light is periodically turned
on and off, Brackbill and Fitzgerald found that when they stopped switching
the light on and off, the pupils of the children would still dilate or constrict
in anticipation of the change. What is clear is that infants possess, at such a
young age, a two-fold understanding of time. Firstly, they show an appreciation
of time duration. Secondly, and more importantly, they have an understanding
of intervals of time, during which they understand that some property of the
world around them holds true, and outside of which, it does not.

By representing time as a collection of time intervals, change occurs when
a new event appears or an old one disappears in the next interval e.g. the light
being on and off. This idea is at the core of the finite temporality approach
to temporal reasoning. A collection of intervals is known as a finite temporality
string, representing a timeline of events, and whose development is subsequently
reviewed in detail. In viewing time this way, the question of when do events
appear and disappear is naturally raised. We review work that has begun an-
swering this question, and suggest a novel, finite-state method, that attempts
to provide an answer by framing the problem differently.

2.1 The Foundations of Finite Temporality Strings

The interval-based temporal logic introduced by Allen [1] serves as the founda-
tion for the temporal representation and reasoning methods described in this
review.

When we think of the time during which an event occurs, we may intuitively
think of it as instantaneous. Taking the example of an event given by Allen to
be "we found the letter at twelve noon", we may interpret it as though the letter
was found at that midday instance. However, upon closer inspection, this may
be broken down further into "looking at the spot where the letter was" and



"realizing it was that singular letter". These sub-events may be decomposed
even further into their constituent parts so as to go right down to the sequence
of neurons that fire in the observer’s brain that lead to the realization that it is
in fact the letter. Even still this may be broken down further. Allen summarizes
this succinctly, saying that

There seems to be a strong intuition that, given an event, we can
always "turn up the magnification" and look at its structure. [1, p.
834]

Thus the notion of time points should not be considered primitive, or the
building block as it were, but instead intervals of time. Consider a model where
we have a fully ordered set of time points, an interval within this set is an
ordered pair of points where the first point is less than the second. An important
question then is raised: Are these intervals open or closed? The open interval
does not include its endpoints whereas the closed interval does. Allen suggests
that these intervals should instead be open on the lower end and closed on
their upper end. If we try to model the change that occurs say, when a light is
switched on, we need intervals to represent times when the light is off and times
when it is on. Open intervals imply that there exists a time where the light is
neither on nor off, and closed intervals suggest that the light can be both on
and off at the same time. The solution of a half-open interval at its upper end
allows for both intervals to meet as required and having only one endpoint.

With this framework in mind, Allen goes on to define several relations be-
tween intervals. By letting ¢ denote some interval, with its lower point and
upper point being t— and t+ respectively, then Table 1, taken from [1], gives
these relations in terms of their equivalent relations on endpoints.

Table 1: Interval relations defined on endpoints.

Interval Relation Equivalent Relations on Endpoints

t before s T+ < s—

t=s (t— =s5—) & (t+ = s+)

t overlaps s (t— <s—) & (t+ > s—) & (t+ < s+)

t meets s t+=s5—

t during s (t—>s—) & (t+ < s+)) or ((t— > s—) & (t+ < s+))

These five relations may be broken down further to give the 13 Allen relations
on temporal intervals. We break down the during relation into during, starts,
and finishes, and include the inverses of these relations. Table 2 provides a
summary, as well as giving pictorial representations, which are to be read from
left to right, and constitute a timeline.
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Table 2: The 13 Allen relations.

Relation Symbol | Pictoral Representation
X before Y XbY XXXYYY
X after Y XbiY |YYY XXX
X during Y Xdy XXX
YYYYYY
X contains Y XdiY YYY
XXXXXX
X overlaps Y XoY XXXX
YYYYY
X overlapped-by Y | X 0iY | YYYYY
XXXXX
X meets Y XmY | XXXYYY
X met-by Y XmiY | YYYXXX
X starts Y XsY XXX
YYYYYY
X started-by Y XsiY |YYY
XXXXX
X finishes Y XftY XXX
YYYYY
X finished-by Y XY YYY
XXXX
X equal Y XeY XXX
YYY

11




2.1.1 Allen Relations and their Prior Probabilities

Taking the scenario where we have that interval a is related to interval b via
some relation R, and b is related to interval ¢ via another relation R’, then how
may we reason about the temporal relation between a and ¢? For example, if a
is before b and b is before ¢, then we can say with certainty that a must come
before c¢. Allen’s transitivity table, given in Figure 4 in [1] shows the relations
that may hold between intervals a and ¢ given that a and b are related via R
and b and c are related via R/, for all combinations of R and R’. Allen also
provides a reasoning algorithm based on constraint propagation as a system for
temporal reasoning about events that are not directly related, however this is
not reviewed here.

When a is before b and b is after ¢, then we cannot deduce anything about
the relation between a and c¢. The context of b does not help here. The intervals
a and c¢ could be related by any one of the 13 Allen relations while still respecting
the fact that a is before b and b is after c.

Can we really say nothing further about the two intervals a and ¢, or in fact
any two intervals of time of whose relation we know nothing about? This is the
motivation behind Fernando and Vogel [3]. They proceed from the following
question:

Given an Allen relation R, what is the probability that R relates
intervals a and a’, aRa’?

This is the same question posed in the introduction, about when events
appear and dissapear, albeit reworded. The principle of indifference states that
this probability should be 1/13. The fact that some relations occur more often
than others in Allen’s transitivity table suggest a deeper structure, and that
these relations are not simply a matter of indifference. It is this underlying
structure that is elucidated in [3].

Following the notation in [3], we define the set AR to be the set of the 13
names of Allen relations, so we have that

AR = {b, bi, d, di, o, oi, m, mi, s, si, f, fi, e}.
Next consider the finite order over n points, [n], to be
n:={ieZ|1<i<n}.
Then we may define an interval (I,r] := {i € [n] | | < i < r}. The question

of what is the probability of aRa’ becomes the probability that (I,r] R (I',7'].
Given that n > 4, we have that the total number of pairs [, and I/, 7’ is (g) . (Z)
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Let each of these possible pairs be hereafter referred to as equiprobable n-worlds,
and let £, be the set of these n-worlds. The cardinality of €, is given by

cardinality(£,,) = (g) : <g>

Similarly, let an n-world, given n > 4, be a function

f : {"'E7 y? x/7y/} % [n]’

that maps 4 distinct variables x,y, 2/, ¢’ to integers in [n] such that

flx) < f(y) and f(2') < f(¥/).

We have that
(f (@), f()] b (f(@), F(¥)]

if f(z) < f(y) < f(2') < f(y') i.e this n-world satisfies the before relation.
Fernando and Vogel go on to say that the probability of aRa’ can be written as
the proportion of n-worlds in €2, that satisfy the relation R € AR,

cardinality ({ f € Qy, | f satisfies R}) ]

cardinality (£2;,) ' (1)

We find that the 13 Allen relations may be categorized into those that are

short, medium and long. To understand the reasoning behind this, we may look

at the representation of each relation as a string. Table 3 does exactly that, a
reproduction of Table 1 in [3].

pn(R) =

Table 3: Allen relations and their string representation.

(L,r] R (I';r"] | sr R7' | spa

(Ar) b (U] || (U |r"] | bi Ufr'|tfr
(el d ("] ||V ||| di | r
(L) o (U] | L[ r|r"| ] ol Ui’ r
(el m (U] | [ e U 7| | mi Ve’ t|r
(L] s (U,r) | LU ]| | si LU |r
(l,r] £ (U, "] Ul | fi e
(el e (U] | LU "] | e

We see that for example | 1,1’ |7, 7’| represents an n-world where | = I’ <

r = r’, which is the equals relation. Looking at Table 3, we see that the first 6
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strings are of length 4, the next 6 are of length 3, and the final relation string,
equals, has a length of 2. Thus these are the 3 categories of relations. The long
relations are defined as

{R € AR | length(sr) = 4} = {b, bi, d, di, o, oi},
the medium relations are

{R € AR | length(sg) = 3} = {m, mi, s, si, f, fi},
and finally the short relations, which are

(R e AR | length(sg) = 2} = {e}.

In order to calculate py,(R), we need to know the number of n-worlds that
satisfy R, given n > 4.

Fix n = 4, then we have [4] = {1,2,3,4}. For the equals relation, there are
6 4-worlds that satisfy this relation, namely

{(z,1),(2",1),(y,2), (v, 2)}
{(z,1),(«",1), (y,3), (¢, 3)}
{(2,1), («',1), (y,4), (v, 4)}
{(2,2),(«",2), (y,3), (¥, 3)}
{(2,2), («,2), (y,4), (v, 4)}
{(2,3), (,3), (y,4), (v, 4)}

Fernando and Vogel show that the total number of n-worlds satisfying a
given relation depends on whether the relation is long, medium, or short. For
long relations, that number is (Z), for medium relations, it is (g), and for short,
there are (;) n-worlds that satisfy. Representing the medium relations by m,
the long relations by b, and the short relation by e we have that

pr(m) _n—2 and Pn(b) _ n—37
pnle€) 3 Prn(m) 4

which with

1= pu(R) = pale) + 6pnu(m) + 6pn(b),
REAR

leads to Theorem 2 from [3] which states that for n > 4 and R, R’ € AR,
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Pu(R) = pu(R') if length(sg) = length(sp),

where 5
pn(e) = my
_ 2(n—2)
pn(m) = m7
and
palt) = DO

Table 4 gives these probabilities as we increase n. In fact we have that as

n — 00, pu(R) = 0 if R is short or medium and p,(R) = % otherwise, as shown
in [3].

Table 4: Some probabilities from Theorem 2.

pn(e) pn(m) pn(b)
1/6 1/9 1/36
1/10  1/10 1/20
1/15  4/45 1/15
1/28 1/14  5/56

co O Ut |3

2.1.2 Probabilities Over Interval Names

In the previous section, we had summarized Fernando and Vogel’s approach
to assigning probabilities to Allen relations by treating time as a set of n lin-
early ordered points. They continue to consider these probabilities by instead
construing each ¢ € [n] to be an interval name, instead of a point, and using

the strings given in Table 3 to represent them. Take the following string as an
example

124 [1]2,3[3]4

This is a representation of a possible timeline of 4 intervals. We can see that
from this string, 2 overlaps 3, which would be the string

212,313

15



Fernando and Vogel define two operations on these strings, namely the X-
reduct px(s), and the X-projection wx(s). The X-reduct of a string s = ay...ax
is given by

px(s) = (a1 N X)...(ax N X).

Being the componentwise intersection, the X-reduct allows us to narrow our
view of the string to those intervals that we are interested in i.e those intervals
1 € X. For example,

pras( 1,24 |1[23]3]4) =|2| [23]3

Removing the empty boxes, we get the string sz o3 for overlaps relation.
Note that sr/; ; represents the string sp with [, and ', r" replaced with 7 and j
for i, j € [n]. The operation 7x(s) applies the X-reduct and removes the empty
boxes that occur

may( 124 [1]2,3]3|4) =|2[2.3|3]|

Let L£,, be the set of strings of non-empty subsets of [n] where each i € [n]
occurs exactly twice.

Loi={se @ —{| [D* | (vi € () mi(s) = i1}

The string given in the example demonstrating the X-projection above would
be a member of the set £4. Fernando and Vogel then go on to say that p,(R),
the proportion of £, in which interval 1 is R-related to interval 2 is

cardinality (L, (R))
cardinality (L)

pn(R) = (2>

where £,,(R) is the subset
{se L, | sk 1R2},

of strings whose {1,2}-projection corresponds to the string s R/1,2- Not in-
cluded here is the procedure given in [3] that is used to calculated the cardinality
of L, (R) for brevity’s sake, however probabilities for the three classes of Allen
relations are given in a similar manner to that described previously for n points
rather than intervals. Table 3 in [3] gives these probabilities for several values
of n. We include here in Table 5 the entry for n = 2 intervals.
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Table 5: The entry for n = 2 intervals from Table 3 in Fernando
and Vogel.

n  py(e) pn(m) Pn(b)
2 1/13 1/13 1/13
3 0.031785 0.061125 0.10024

2.2 Finite Temporality Strings and their Operations

We have, in prior sections, looked at strings where the endpoints of the intervals
within them are given. Taking the example string given previously

1,2.4(1(2,3]3]4],

instead of marking the endpoints of each interval, we may use a stative
predicate to represent events, and their inclusion in a given interval determines
whether they are happening in that interval or not. Let the set A be the set of
event names, or fluents, as given in Fernando et al. [9], then we have the string
$ = aq...a; Where each «; is a subset of A. We read these strings chronologically
from left to right with it being undertstood that at position 7, 1 < i < n, every
fluent a € a; holds. Thus we may translate the above string into the following
finite temporality string , where where the four interval names that represent
the intervals during which some event is occuring are replaced with predicates.
We have that A = {a,b,c,d} i.e we convert the intervals into fluents.

a,b,d|b,c,d|c,d|d

The empty boxes on either end are for times before these intervals and times
after i.e times where none of the events a € A are occuring. These events occur
for a finite amount of time, and the empty boxes are there to show that there
is indeed a defined start and end for each event in the string. Table 6 gives the
13 Allen relations over the fluents a and b in terms of these finite temporality
strings.

Several operations on finite temporality strings are defined in [9], with the
most basic of which being the superposition. Given two strings s and s, s & s’
is the componentwise union

aj...an & af...al, = (apUa))...(a, Ual,)

of each «; and of. For example, we have that

a|lbl&|cld|=|a,c|b,d]|

17



Table 6: The 13 Allen relations written as finite temporality strings.

Relation Finite Temporality String
equal (e) a,b
before (b) al |b
after (bi) bl |a
during (d) bla,b|b
contains (di) ala,bla
overlaps (0) ala,b|b
overlapped-by (oi) bla,b|a
meets (m) alb
met-by (mi) bla
starts (s) a,b|b
started-by (si) a,bla
finishes (f) bla,b
finished-by (fi) ala,b

18



Note that both strings need to be the same length. The block compression
operation, and its inverse allow for the length of a string to be changed without

altering the temporal information that is encoded. The string| |a|ala| |b|b

is temporally equivalent to the string| |a| |[b| |. The repetition, or stutter in

these strings does not add any extra information. The duration of each inter-
val is not of importance and is not considered in these strings. What these
strings try to encode is the progression of events, therefore if two consecutive
subsets a;, ;41 are equal then we can remove one of them, since no change
happens, coinciding with the Aristotelian view that there is "no time without
change". Strings that contain stutter can be made stutter-less by applying the
block compression, defined as

s if length(s) <1
be(s) := < be(as’)  if s = aas’
abe(ds’) if s = ad's'with a # o
The inverse, bc™! generates the infinite language of strings that are said to
be bc-equivalent to s. The ability to change the length of these strings means
that we may apply the superposition operation in order to combine two or more

strings into one. Asynchronous superposition is a method developed in [9] and
was further optimized in [8] to become, vocabulary constrained superposition.

2.2.1 Vocabulary Constrained Superposition

Vocabulary constrained superposition is an operation on finite temporality strings

that generates temporally consistent timelines. If we let s = a and

S9 = b| |, then s1 &ye s2 is the set of the 13 strings that correspond to

the 13 Allen relations, as given in Table 6. What we are saying here is that we
know nothing about intervals a and b, only that they are finite. The vocabulary
constrained superposition then should result in a set of strings where what we
know already about the intervals is maintained. Since we know nothing about
a and b, all 13 relations could be possible timelines of these events.

Now if we introduce another interval ¢, and we know already that a before b
and b before ¢, we can incorporate these constraints by superposing the strings
that represent these relations. Continuing with this example, we have that

al|l |b| [&uel| |B] |c| |=]| a] |b| || |

or if instead we know that b during c, then we have

19



a,clc|bye |ec| [}

By applying block compression to the {a, c}-reduct of the 5 possible timelines
above, we can see that intervals a and c could be related via the relations
b, o, m, d, and s, which corresponds to that entry in Allen’s transitivity table
fora Rband b R ¢, with R=5band R’ = d.

Let voc(s) be the union of all subsets «; € s, namely

n
voc(s) 1= U a,
=1

where n is the length of the string s. The vocabulary constrained superpo-
sition of two strings s and s’ is defined as

I __
5 &y 8 =5 &voc(s),voc(s’) sl

Let the string s1 = aj...ay, be rewritten as s; = as, where « is the first
component «q of the string s1, and s = as...cw,. Similarly, let so = o/s’. If we
have two sets ¥ and Y/, then

{(aUd)s"|s" € L}, if ENd/ Caand ¥ Na C o
&, otherwise

51 &xzv 52 = { (3)

where

L= (as &2’2/ 8/) U (S &2721 O/S/) U (8 &E,E’ S,).

Vocabulary constrained superposition is both commutative and associative
[8], which allows us to superpose however many strings together in any order
to generate timelines of the events in these strings. If we are interested in the
relation between some particular events,

be(px (s))

20



can be applied to any string that is generated from the superposition to
see the relation between the events a € X, and, as Allen puts it, "turn up the
magnification".

2.3 Conclusion and Discussion of Further Research

Allen’s 13 relations are the core of the finite temporality approach to temporal
knowledge representation and reasoning. Finite temporality strings allow us to
encode temporal information about events and their relationships, and vocab-
ulary constrained superposition lets us reason about events in these strings by
combining them into timelines. It is important to consider that the number of
possible timelines that are generated from the vocabulary constrained super-
position increase exponentially as we add more events. We have seen already
that there are 13 possible timelines for 2 events, the 13 Allen relations. With 3
events, the number of timelines is 409, with 4 events we have 23,917, and with
5 events, the number is slightly over 2.2 million. What [9] labels as the "com-
binatorial explosion" is huge, and by introducing what we may already know
about the events into the strings, we are able to reduce the number of possible
timelines. For example, the 409 possible timelines of the events a, b, and c are
reduced to just the one timeline

al |b| |c| |,

if we know already that a before b and b be fore c. In general, the more infor-
mation we know about the temporal relationships that hold between intervals,
the more we can narrow down the set of their possible timelines.

The probabilities of Allen relations developed in [3|, while different when
considering time in points or intervals, point to the underlying structure of the
relations themselves. Their results are the result of an argument from first prin-
ciples, and further work may build upon this by coming to probabilities through
more empirical means such as simulation, by looking at the divergences that dif-
ferent timelines take after each interval and seeing how often these divergences
are taken. The appearance of events and their disappearance changes the state
of the world of events. This is fertile ground for the application of finite state
models such as probabilistic automata. Investigating the behaviour of these
models may lead to new insights about the structure of Allen relations.
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3 Temporal Reasoning in Python

One of the advantages of finite temporality strings is that they can be repre-
sented in a computationally efficient manner. The temporal reasoning system
described by Allen [1] is based on representing event intervals as nodes and the
temporal relations that hold between them as labelled arcs connected two nodes,
thereby building a directed graph of temporal knowledge. Representing graphs
in code requires complex techniques such as adjacency matrices or adjacency
lists. Finite temporality strings can be represented simply by using a primitive
string or a basic array data structure that is available in most if not all program-
ming languages, and holds the individual «; sets of a given finite temporality
string. These strings also present the appealing visual of a timeline, where all
events and their relationships can be viewed at once.

3.1 Representing Finite Temporality Strings

Given a finite temporality string (subsequently referred to simply as a string)
s = aq...ap, with each o4 being a subset of A, the finite fixed alphabet of flu-
ents, a primitive python string could be used to represent it, such as "lalc|"
or "la,blc,d|" but these should only be used for displaying strings. Internally
some other data structure should be used as raw strings are not easy to manip-
ulate and this will become a problem when implementing operations on these
strings. Using an array is a slight improvement, but again, when it comes to
manipulating these strings, we would very much like to avoid having to mess
around with array indices and mutating these arrays in place.

A better solution is to use a linked list, where each node represents a set in
P(A), the power set of A, and contains the set of fluents within it e.g la,blc,dl

would be the linked list with two nodes that represent |a,b| and |c,d| This

allows for easy manipulation, i.e superposing, block compression, and generating
be-equivalent strings, and results in readable, pythonic' code.

We take an object oriented approach, and define the class FTString, as that
which will represent a single finite temporality string. Its constructor is defined
below.

class FTString:
def __init__(self, init=[]):
self .head
self.tail = None

None

!Code that is pythonic is code that follows the preferred way of doing things in python.
There are many ways of course to implement a given program, but doing it the pythonic way
is often the best.
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self.length = 0
try:
for a_i in init:
self.add(a_i)
except:
raise ValueError("Constructor argument is not
— 1iterable or does not consist of sets")

def add(self, fluents):
if not isinstance(fluents, set):
raise ValueError("Argument must be a set")
new = FTNode(fluents)
if len(self) == O:
self .head = new
self.tail new
else:

new.prv = self.tail

self.tail.nxt = new

self.tail = new
self.length += 1

In the above Listing, we define the constructor, and another method named
add (). This class is a linked list, so the constructor initialises three member
variables, head, tail, and length. The first two are pointers to the first and
last element in the string. These are of type FTNode, which is just a python
class with three member variables:

fluents The set « that is represented by this node
nxt A pointer to the next FTNode in the list

prv A pointer to the previous FTNode in the list

class FTNode:
def __init__(self, fluents, nxt=None, prv=None):
self .fluents = fluents
self .nxt = nxt
self.prv = prv

The constructor for FTString takes an optional iterable of sets, e.g a 1list,
that would populate the string, otherwise it is initialised as empty. The member
function add () takes care of this as well as changing the head and tail pointers
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to reflect the newly added FTNode. There is also type checking to make sure the
input is a python set. Each new FTNode is simply just appended to the end of
the list.

We also implement an iterator for this class so we can use the for ...
in python syntax and be in keeping with the pythonic way of doing things. In
python, an iterable is a class which provides an implementation for the __iter__
built-in function. Typically, this function should return a new instance of an
iterator that iterates through each element in the data structure. In this case
we return an iterator that iterates through each set «; in our string s. The
implementation of __iter__ is given below and is just one line, returning a new
instance of the the FTStringIterator class.

def __iter__(self):
return FTStringIterator(self.head)

For a class to be considered an iterator it must implement both __next__ and
__iter__. As the name suggests, each time __next__ is called, it returns the
next element i.e. the next set in the string. When we reach the end of the string,
a Stoplteration exception is raised, signalling the end of the string. Within
__next we keep track of the current FTNode the iterator is on, update the
pointer to go to the next node, and return the current one. We either return
the FTNode instance, or just the set fluents, depending on the constructor
argument node. Iterators themselves are iterable, thus we define the __iter__
method to return the instance of the iterator.

-

class FTStringlterator:
def __init__(self, string_head, node=False):
self .head = string_head
self.index = 0
self .node = node

def __next__(self):
try:
fluents = self.head.fluents
f_head = self.head
except AttributeError:
raise StopIteration()
self.index += 1
self .head = self.head.nxt
if not self.node: return fluents
else: return f_head
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def __iter__(self):
return self

To illustrate the iterator’s behaviour, the following example is given. We
can now create a new string and print out each set within it:
s = FTString([{'a'},{'b','c'},{'d"'}])
for alpha in s:

print(alpha)
{'a'}
{Ibl, ICI}
{'d'}

3.1.1 Set Isolation

Given a string s, it is often useful to split it into s = aa’s’ or s = as’. The
member function isolate() takes a single integer parameter and decides how
many sets to isolate. For example, s.isolate(1) would split the string into as’.
This operation is very helpful in the computation of the superposition of two
strings, as well as in block compression. This function returns an n + 1-length
tuple of FTString objects respectively representing the string split up into «,
o/, and s'. The as_set argument determines whether to return the separate
a;'s as FTString instances or as set instances.

def isolate(self, n, as_set=True):
if not isinstance(n, int):
raise ValueError("Trying to isolate non integer number of
— sets")
if n > self.length or n < 1:
raise ValueError("Trying to split string into too many/few
— values")

result = []
s_prime_alphas = []

for i, alpha in enumerate(self):
if 1 < n:
if as_set: result.append(alpha)
else: result.append(FTString([alphal))
else:
s_prime_alphas.append(alpha)
result.append (FTString(s_prime_alphas))
return tuple(result)
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The algorithm here is straightforward, we loop through each a; for ¢ < n
and isolate those sets of fluents, and the remaining sets are combined into one
string. The result is then returned as a tuple. This behaviour is illustrated in
the following example, where we isolate the first set, and then the first two sets
of the string.

s = FTString([{'a'},{'0p'},{'c'},{'da'}])
print(s.isolate(1))
print(s.isolate(2))

LADD
"31))

({'a'}, FTString([{'b'}, {'c'}, {'d
({'a'}, {'v'}, FTString([{'c'}, {'d

3.1.2 Block Compression and its Inverse

The block compression of a string s, be(s), is defined as the following from
Fernando et al. [9]:

s if length(s) <1
be(s) =< be(as’)  if s = aas’ (4)
abe(d's’) if s = ad/s'with a # o/

This removes the stutter in strings e.g be(| |a|a|a|b|b||)=||a|b| | The

Listing below gives the python implementation, which is a recursive function
since the mathematical definition is itself recursive. When the length of s is
less than or equal to 1, we just return a new instance that is the same as s
so there are no reference issues with just simply returning the argument. The
new instance is created via s * 1. The * operator has been overloaded to mean
repeated concatenation of a string and returns a new object.

def __bc(s):
if len(s) <= 1: return s * 1
alpha, alpha_p, s_p = s.isolate(2, as_set=False)
if alpha == alpha_p:
return FTString.__bc(alpha_p + s_p)
else:
return alpha + FTString.__bc(alpha_p + s_p)

We overload the unary operator ~ to return its argument block compressed,
resulting in concise and readable code.

s = FTString([set(O),{'a'},{'a'},{'a'},{'b'},{'b'},setO])
print(7s)
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Inverse block compression is when we introduce stutter to strings. Any string
s has an infinite language of bc-equivalent strings, and the function pad (k) re-
turns the finite set of be-equivalent strings only of length k. The implementation
of this algorithm is done using the idea that this is just a case of solving the
equation

il’i =k
i=1

where n is the length of the string. The value of each x; in a given solution
represents how many times we repeat the ¢ -th set of fluents in the string. Let

us consider an example with the string s = , and we want to find all

be-equivalent strings of s of length £ = 6. One solution of the equation

is xg = 1,21 = 1,22 = 4, which would represent the string |a|b|c|c|c|c|

The following Listing gives the implementation of a recursive function that cal-
culates all (Zj) solutions. This is a generator function as given by the yield
statements. Generator functions are described in greater detail in the next sec-
tion where they are used to implement vocabulary constrained superposition.

def inv(n, k):
if n <= 0 or k <= 0:
yield None
if not isinstance(n, int) or not isinstance(k, int):
yield None
elif = 1:
yield [k]
elif n == k:
yield [1 for
else:
xl_max =k - (mn - 1)
for x1 in range(l, xl_max + 1):
sol = [x1]
for s in inv(n - 1, k - x1):
yield sol + s

in range(n)]
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We have that for any solution zi,..,z,, the corresponding bc-equivalent
string for s = ...y, will be (g * 21)...(ap, * ). The following listing gives
the member function that generates bc-equivalent strings for a given FTString
instance.

def pad(self, k):
if k < len(self): raise ValueError("k is smaller than the
< length of the string")

for x in inv(len(self), k):
a_i_strings = map((lambda a_i, x_i : FTString([a_i]) =*
— x_1i), self, x)
yield reduce(add, a_i_strings)

The previous example of finding the bc-equivalent strings of length 6 for the
string |alblc]| is done below in python. We loop through the results of pad(6)
and print them out below.

s = FTString([{'a'},{'b'},{'c'}])
for string in s.pad(6):
print(string)

lalblclclclcl
lalblblclclcl
lalblblblclcl
lalblblblblcl
lalalblclclcl
lalalblblclcl
lalalblblblcl|
lalalalblclcl|
lalalalblblc]|
lalalalalblc]|

3.1.3 Relation Resolution & Well Formedness

An important property of these strings is that the event intervals have only one
beginning and one ending, and equally important is the ability to determine
whether a string obeys this property ie whether it is well formed. That is what
well_formed() does, taking advantage of the idea given in [9], that applying
block compression to a string which has been reduced with pqy(s) Va € A,

produces a string consisting of only a with empty sets on either side, | |a

The empty sets are there to show that an event does not occur for an infinite
period of time 7.e we can be certain that there existed something before it and
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it will end with something existing after it. If an event started and ended more
than twice, the result of bc(pg,1(s)) would have the event appearing more than
once.

In the Listing below we define three new member functions of the FTString
class:

voc returns the set A, the vocabulary of the string

reduct Takes argument X, of type set, and implements px (s) = (a1NX)...(ax,N
X), returning a new FTString instance.

well_formed returns True or False representing whether the string is well
formed or not.

def voc(self):
v = set()
for alpha in self: v = v | alpha
return v

def reduct(self, X):
if not isinstance(X, set):
raise ValueError("Argument is not a set")
s = FTString()
for alpha in self: s.add(alpha & X)
return s

def well_formed(self):
vocab = self.voc()
for £ in vocab:
reduced = FTString.__bc(self.reduct({£}))
if reduced !'= FTString([set(),{f},set()]):
return False
return True

The X-reduct operation px(s) can also be used to resolve the relation be-
tween some subset of events X in the string’s vocabulary. Take the string

a,b,d|b,c,d|c,d|d]| | that has vocabulary {a,b,c,d}. By using px(s) and

then applying the block compression, we can, as Allen puts it, "turn up the
magnification".

To resolve the temporal relation between b and ¢ for example, we apply the
{b, c}-reduct to the string
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be(pgpey(| |a, b, d|byc,d|e,d|d] ) =|[b|b,c|c|],

and we see that b overlaps c¢. The Listing below shows how to do this in
code.

from ftstring import FTString

s = FTString([set(),{'a",'b",'d'},{'b",'c','d'},{'c",'d"},{'d"'},s|
= etO

print("s.reduct({'b','c'}))

I Iblb, clcl |

3.2 Vocabulary Constrained Superposition

Let voc(s) be defined as the union of the components of a string, which is the
result of voc(). We have that the vocabulary constrained superposition of two
strings s and s’ as defined in Fernand and Woods [8] to be
S &vc S, =S &voc(s),voc(s’) S/.
Given string s1 = as and sy = /s’ and the set ¥ is voc(s) and ¥/ is voe(s'),
then

{(aUud)s"|s" e L} it XN/ Caand ¥ Na C o
&, otherwise

51 &syv S92 = {

where
L=(as&sys U (s &nyw o/s') U (s &n s §)

The implementation of vocabulary constrained superposition is fertile ground
for python’s generator functions. A generator, much like an iterator, generates
each new value lazily, i.e as it is needed. Instead of calculating each possible
result from the superposition of strings and then returning them in a list, we
instead return a generator, which produces the next timeline on demand. In the
literature, superposition is written with the & operator, and so we will overload
the binary & operator. This is done below:

def __and__(self, obj):
if not isinstance(obj, FTString):
return NotImplemented
else:
return SuperpositionGenerator(self, obj)
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def __rand__(self, obj):
if isinstance(obj, SuperpositionGenerator):
return SuperpositionGenerator(self, obj)
else:
return NotImplemented

The SuperpositionGenerator class encapsulates the generation of the time-
lines that result from superposition. The constructor is straightforward. We
check to make sure that the arguments are indeed only of type FIString or
SuperpositionGenerator. Next we have two static functions , __L and __svc.
These are both generator functions since there is the yield keyword. Whatever
is on the right hand side of a yield expression is returned to the caller, and the
next time the function is invoked, the function picks up where it left off until
it reaches the next yield statement. This is the main feature of generators,
and is what allows us to lazily generate timelines. We yield the newly generated
timeline, and then the next time the function is called, we can calculate the next
timeline and yield that, and so on. What is returned by these generator func-
tions are generator objects, which behave much in the same way as iterators.
Ramalho [7] explains

When we invoke next(...) on the generator object, execution ad-
vances to the next yield in the function body, and the next(...)
call evaluates to the value yielded when the function body is sus-
pended. Finally, when the function body returns, the enclosing gen-
erator object raises StopIteration, in accordance with the Iterator
protocol. |7, p. 429|

In __L, the function that generates L from the mathematical definition, we
include a yield from statement, which simply means that the function should
yield from the generator expression on the right hand side, and once it is ex-
hausted, continue on with the rest of the statements in the function.

The function __svc then implements the algorithm for vocabulary con-
strained superposition as given in the definition. It is a recursive function, since
we call __L which in turn calls __svc to generate the set L. We also implement
__and__ and __rand__ to allow us to use the & operator when superposing
instances of FTString and SuperpositionGenerator. When superposing two
SuperpositionGenerators this is equivalent to superposing two languages of
strings, where every string in one language is superposed with the every string
in the other language. This is given in the __iter__ method, where we check
each possible case, and perform the corresponding operation.
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class SuperpositionGenerator:
def __init__(self, argl, arg2):

if isinstance(argl, FTString) or isinstance(argl,

< SuperpositionGenerator) :
self.argl = argl

else:
raise ValueError("Must be an FTString or another
< SuperpositionGenerator")

if isinstance(arg2, FTString) or isinstance(arg?2,

< SuperpositionGenerator) :
self.arg2 = arg?2

else:
raise ValueError("Must be an FTString or another
< SuperpositionGenerator")

def __L(a, s, a_p, s_p, sig, sig_p):
a_s = FTString([al) + s
a_p_s_p = FTString([la_p]) + s_p
yield from SuperpositionGenerator.__svc(a_s, s_p, sig,

< sig_p)

yield from SuperpositionGenerator.__svc(s, a_p_s_p, sig,
<~ sig_p)

yield from SuperpositionGenerator.__svc(s, s_p, sig,

< sig_p)

def __svc(sl, s2, sig=None, sig_p=None):

if len(sl) == 0 and len(s2) == 0: yield FTString()
elif len(sl) == 0 or 1len(s2) == 0: yield None
else:

if sig == Nomne: sig = sl.voc()

if sig_p == None: sig_p = s2.voc()
a, s = sl.isolate(1)
a_p, s_p = s2.isolate(1)
if (sig & a_p <= a) and (sig_p & a <= a_p):
temp = FTString([a | a_p])
L = SuperpositionGenerator.__L(a, s, a_p, s_p,
< sig, sig_p)
for s_dp in L:
if s_dp is not None:
yield temp + s_dp
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def

def

def

else:
yield None

__and__(self, other):
if isinstance(other, FTString) or isinstance(other,
< SuperpositionGenerator):

return SuperpositionGenerator(self, other)

else:
return NotImplemented

__rand__(self, other):
if isinstance(other, FTString):

return SuperpositionGenerator(self, other)
else:

return NotImplemented

__iter__(self):

if isinstance(self.argl, FTString) and

< isinstance(self.arg2, FTString):
yield from SuperpositionGenerator.__svc(self.argl,
— self.arg?)

elif isinstance(self.argl, FTString) and
< isinstance(self.arg2, SuperpositionGenerator):
for timeline in self.arg?2:
yield from timeline & self.argl

elif isinstance(self.argl, SuperpositionGenerator) and
— 1isinstance(self.arg2, FTString):
for timeline in self.argl:
yield from timeline & self.arg?2

else:
for timelinel in self.argl:
for timeline2 in self.arg2:
yield from timelinel & timeline2

We can now use this class to superpose strings together. The Listing below
shows that when we superpose two unconstrained strings 7.e. a string consisting
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of just one fluent, we get the 13 Allen relations as expected.

sl = FTString([set(),{'a'},set(])
s2 = FTString([set(),{'b'},set()])
gen = sl & s2

for timeline in gen: print(timeline)

[ Il lal |

| Ibla, blal |
| Ibla, blbl |
| Ibla, bl |

| Ipblal |

| lala, blal |
| lala, blbl |
| lala, bl |
[ lal Ibl |
| lalbl |

| la, blal |
| la, blbl |
| la, bl |

Note that now we have exhausted the generator, so if we try to get the next
timeline, it will return nothing.

The next example shows a more complex situation, where we have 3 strings
and 4 fluents. When we superpose these strings, we get only one timeline,
representing the only way in which these 4 events could have played out in
time.

sl = FTString([set),{'t1'},{'eil"',"t1'},{'t1'},set(])
s2 = FTString([set(),{'ei9'},{'t1','ei9'},{'ei9'},set(])
s3 = FTString([set(),{'ei9'},set(),{'eil0'},set()])

for timeline in sl & s2 & s3:
print (timeline)

| lei9|t1l, ei9leil, t1, ei9ltl, ei9lei9| |eill| |

We have that eil happened during t1, which happened during ei9, which
occured before ei10. Thus the single timeline produced is the only possible
resulting timeline of these 4 events. This example is taken from a document from
the TimeBank corpus, [6]. This is a collection of 183 news articles annotated
with the TimeML [5] schema. Events that occur in the text are given a unique
identifier and the relations that hold between them are annotated using TLINK
XML tags. By extracting TLINK tags from these TimeML documents, we can
construct corresponding finite temporality strings, and superpose them together
to produce a timeline summary of the text within a document.
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3.3 Performance and Evaluation

Due to fact that superposition is associative and commutative, we can use brack-
ets to group strings with shared fluents so we can reduce the total number of

timelines in any given generator. Take an example with 3 strings, | [a| |b] |,

bl |c||,and| |c| |d]| | The first and the last share no fluents, and so we will

have 321 possible timelines, but when superposed with the second, the possible

timelines are reduced to just 1, | |a| |b| |[c]| |d

The amount of timelines increases exponentially for a given number of events.
This is the main motivation for using generators, as, in any real life application,
we will have lots of events and millions of timelines and storing them all in
memory is not feasible. Generators allow us to generate timelines one by one
and throw them away when we are done. They do not linger in a data structure
in memory, and if we want to keep them, the best practice is to store them into
a file.

Memory-wise, superposing two strings is the same as superposing five, how-
ever depending on the strings, one will generate millions of timelines, and the
other may generate only one, and the time taken to run through all these time-
lines will vary. Table 7 gives 4 example superposition operations where we
superpose unconstrained event strings, i.e we know nothing beforehand of the
temporal relationships that may hold between events. Superposing up to four
unconstrained event strings takes very little time, however when we add a fifth
event, the time skyrockets since the total number of timelines skyrockets, from
23,917 to slightly over 2.2 million.

Table 7: The time taken and the number of timelines generated for
several superposition operations.

Operation Time Timelines
a| &y | b 0.0016s 13
a| &y |0] &ud | € 0.0516s 409
al &ud 10 &od | €] &od | d 3.7734s 23917
a| &y | 0] &ud || &ud |d] & | € 446.2086s 2244361

In general to avoid these long computation times, avoid superposing strings
with a lot of events and little connections between them. This uncertainty
about what may hold between events is what results in these large numbers of
timelines, since we produce every possible result.
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3.4 Calculating Allen Relation Probabilities

The question of

Given an Allen relation R, what is the probability that R relates
intervals a and o', aRa’?

that is the motivating question behind [3], and which is answered through
analytical means in that paper can also be answered here.

The probability of an Allen relation is the proportion of timelines in the re-
sult of the superpostion of n unconstrained event strings where some two inter-
vals a and b are related via that relation. This is done mathematically in [3], and
here we can calculate these proportions by using the SuperpositionGenerator
class to superpose the n event strings, and then count the number of times in-
tervals @ and b are related via the relations equals, before, after, during, and so
on. Appendix A gives the python code on how to do exactly this.

We may group relations together into 3 categories: short (e), medium (m,
mi, s, si, f, fi), and long (b, bi, d, di, o, 0i), as done in [3], since relations that fall
into the same category will have the same probability, as described in Section 2.
Table 8 summarizes the proportions for short, medium, and long relations for
n = 2,3, and 4 unconstrained event strings. Looking closely, these are the exact
results from [3] (Table 3) when time is modelled as a collection of intervals. The
mathematical procedure for calculating probabilities devised in [3] mirrors that
which we do here, since in the end it is just calculating the proportion of the
possible outcomes that satisfy a given constraint i.e that intervals a and b are
temporally related via some relation R.

Table 8: Probabilities of short, medium, and long relations as we
change the number of events.

n pa(e)  pa(m)  pp(b)
2 1/13 1/13 1/13
3 0.03178 0.06112 0.10024
4 0.01710 0.04921 0.11460

3.5 Conclusion

We have introduced a framework for temporal reasoning in python based on
the finite temporality approach pioneered by Fernando et al. [9, 8]. The frame-
work allows for the creation and manipulation of finite temporality strings,
their combining through an efficient implementation of vocabulary constrained
superposition, and the easy resolution of the temporal relations that may hold
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between event intervals. In the next section we go on to look at this question
of probability more closely, and develop new methods for calcuating timeline
probabilities.
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4 Timeline Generation and Likelihood

The question of

Given an Allen relation R, what is the probability that R relates
intervals a and a’, aRa’?

is considered here in the general sense, i.e
What is the probability of a given timeline for some set of events A?

The former question is answered in Fernando and Vogel [3], and the latter is
the focus of this section, where we attempt to answer it through the lense of finite
temporality strings. We have already reproduced the results of 3] by using the
temporal reasoning framework introduced in the previous section to generate all
possible timelines and then look at the proportions of those possible timelines
that satisify a given relation R, with that being understood as the probability of
a relation. In this section we follow a different approach.

These strings constitute a timeline of events, and we can construe each «
interval set of a string as being the result of some random process. Simulation
of this random process can be used to generate timelines, and by looking at the
proportion of the possible timelines generated for some set of event names A,
we may come to probabilities of timelines.

4.1 Stochastic Superposition

A random process, or a stochastic process, is a collection of n random variables
Xo, ..., Xn—1 and it is Markovian if it satisfies the Markov property, in that the
value of X; is conditionally dependant only on X;_;. The history of the process
is irrelevant. Mathematically, it is that

P(X,L = $|XZ',1 = :L’ifl) = P(X,L = $|XZ',1 = Ti-1, ...,Xo = 230).

Subsequently we will be considering finite temporality strings as the result
of a stochastic process, what we term here as stochastic superposition. More
precisely, each interval set «; in a string s = ..., can be reimagined as a
random variable, and the string itself as the collection.

Strings represent the timeline of some set of events, A, or its vocabulary.
The vocabulary of a string s, is the union of its components, and we have that
each «; is a subset of A. Thus the state space of stochastic superposition i.e the
possible values for each X, is simply the power set of A, P(A). An important
property of the events in these strings is that they happen only once. They
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cannot reoccur since they, philosophically, represent the occurence of a singular
event instance. The event a € A may, for example, represent last Tuesday, and
since last Tuesday cannot stop and start again, neither can the event a. More
formally, if we have a string of length n generated from a stochastic process

X07 "'7Xi717Xi7 "'7Xj7 ...,anl,

with each X; € P(A), then Vo € (X;-1 — X;) , « ¢ X, j > i, with —
representing set difference. We are saying that any event that ends in X; 1,
cannot reappear in a later interval. What this means is that when we have
such a transition where |X;_; — X;| > 0, the number of possible values for
the next random variable gets smaller, since we cannot transition to any state
where the events that ended in X;_; reappear. Note this language of states and
transitions. The stochastic process of superposition can be remodelled using
finite state methods, an idea we expand greatly upon subsequently.

Taking the string | |a| [b|b,c| |, as an example we have X; = {a} and
Xy =0, and that X; — X5 = {a}. This tells us that the event represented by a
is over, and therefore cannot reappear in any later intervals. This behaviour is
obeyed with this example, and the string is said to be well formed. In fact, any
string s € s’ &y 8" will be well formed assuming s’ and s” are well formed.

4.1.1 Stochastically Generating Well Formed Strings

Each «; in a finite temporality string is an element from the powerset of the
vocabulary. In stochastic superposition, each X; is randomly chosen from its
corresponding set of possible values, S;, and how this set evolves is explained
below.

Let Sy be the initial state space of our stochastic process, which is P(A).
Also, define O;, the set of events that cannot reappear in a later X;, j > 4, to
be

B 0 ifi=0
Oi_{OilU(Xil—Xi) ifo<i<n-—1 (5)

and observe that U?:_(]l O; = A for a well formed string. The value of Xj,
the random variable, must be chosen from its corresponding state space 5;. We
know that events cannot reappear once they have ended. We also disallow any
stutter in strings, so the state space changes after each step, either removing
subsets where an ended event appears or removing the previous X; in order to
prevent stutter. We have that Sy = P(A), then let the set P; represents the set
of states such that Vj, i <j <mn, X; ¢ P;. We then have that
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Pi={scSy| |snO; >0} (6)

P; is the set of possible states that a later X; cannot have. With Sy = P(A),
we may then define .S;, the space of possible values for X; to be

Si = (So — Pi—1) — {Xi—1} (7)

Take the example string | |a|a,b|a,b,c|b,c|c| | The initial state space is

So = {0,{a}, {b},{c},{a,b},{b,c}, {a,c},{a,b,c}}. Table 9 shows the evolution
of the state space after each X; is randomly chosen from its corresponding state
space.

Table 9: State space evolution

Si Xi

{2, {a}, {0}, {c}, {a, b}, {b, ¢}, {a, ¢}, {a,b,c}}  {@
{{a}, {b},{c}, {a, b}, {b, ¢}, {a, ¢}, {a,b,c}}  {a}
{2, {b}, {c}, {a,b},{b, ¢}, {a, ¢}, {a, b, c}} {a,b}
{2, {a},{b},{c},{b; ¢}, {a, ¢}, {a,b,c}} {a,b,c}
{9, {a}, {0}, {c}, {a, b}, {b, ¢}, {a, c}} {b,c}  {a}
{2, {b},{c}} {c} {a,b}
{2} {2} {a,b,¢c}

N

(NEVENRN @)

OO W N~ O .

We can see that Vi, X; € S;, and that S; strictly includes only values that,
if chosen, result in a well formed string. The exclusion of {X;_1} is to prevent
stutter. We can also see that O; keeps track of the events that have already
ended.

When S; = @ i.e. step 7 of the preceding example, the string has ended.
There no longer exist subsets of A where events that have already ended do not
reappear or are not the previous. The sample space is eventually exhausted, and
the process cannot continue indefinitely according to the rules defined above.
All the possible values have been visited due to the fact that none remain, and
since we cannot repeat, there is nothing left to do, thus the string ends.

The selection of X; from its corresponding state space .S; directly affects what
the next state space, from which we select X;;1, will be. These depedencies
between state spaces are visualised in Figure 1, as a Finite State Acceptor
(F.S.A) that accepts well formed strings that concern only two events, A =
{a,b}. The alphabet of this F.S.A is P(A). Each state represents a possible
state space S; from which X; may be chosen, and the choice of a particular X is
what determines the transition from one state space to another. The state sg in
the F.S.A represents the power set, since this is the state space at the beginning,
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and s4, the accepting state, represents the empty state space; no transitions are
allowed without disobeying the rules of a well formed string. All paths from sg
to s4 constitute a timeline of two events, and the 13 unique paths are the 13
Allen relations.

{a,0}

{a}. )
(s
.

{a,b}

Figure 1: The allowed transitions between state spaces for two
events.

To simulate timelines, one simply needs to assign transition probabilities to
each arc in the F.S.A  and build timelines by keeping track of the X;’s that are
chosen. In the subsequent sections, we do exactly this but not before introducing
a new construction.

4.2 The Unborn Living Dead Construction

Events can be described in one of three ways: they are yet to happen, are cur-
rently happening, or have already happened. We can rephrase this by classifying
events as being either unborn, living, or dead, forgoing any of the spirituality
connotations. Given a finite non-empty set of event names A, the triple (U, L, D)
partitions A into those events unborn, those living, and those dead. Since events
cannot be unborn, living, or dead at the same time, U, L, and D are disjoint
subsets of A, and whose union is A, since all events must be in one of these
three sets. Subsequently we refer to these triples as A-states.

Unborn events can be born and made living, and living events can die.
Events cannot go straight from unborn to dead, since for something to die, it
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must first have lived. Let ~~ be the binary relation on A-states given by

(U,L,D)~ (U',L/,D') < U'CUand L#L and DC D' CDUL. (8)

We ban stuttering by imposing that L # L’. D C D’ implies that once an
event is dead it is always dead, and D’ C D U L says that only those living can
die. These rules are necessary in order for a sequence of A-states to constitute
a temporally coherent timeline i.e a well formed string.

An A-story is a path from (A4,0,0) to (0,0, A), i.e all the events must live
and die for a sequence of A-states to be considered an A-story, a sort of nar-
rative where the characters are these event names, and whose personalities and
relationships are expressed only through their birth and death. An A-story is
a piece of concise prose bordering on the laconic, however our concern here is
not with the medium’s expressive potential, rather it is a means to an end, that
end being calculating a probability.

Take the most simple example where A = {a}, the set of a single event
name. The only possible A-story is then

({a},0,0) ~ (0, {a},0) ~ (0,0,{a})

where a begins as being unborn, it lives, and finally dies. By concatentating
the succesive L sets in each A-state, we may build the A-story’s corresponding

finite temporality string. The above example would result in the string | |a

Now consider Figure 2, which gives a directed graph representation of the al-
lowed transitions between A-states for A = {a,b}. The 13 unique paths along
this graph from the starting node to the node where all events are dead corre-
spond to the A-stories for the 13 Allen relations.

By assigning probabilities to the transitions, we get a markov chain where
the stochastic sequences that result from its traversal begin at the start state
(leftmost node) and end at the end state (rightmost node). Figure 2 labels the
end state as an accepting state, taking notation from automata theory, and this
would be the same as just labelling the transition from the end state to itself
as 1, and all other transitions 0. When all events have died, nothing further
can happen. There are no more unborn events to be made living, and no living
events to kill, and so we end the sequence there. Further study may consider
events that can resurrect, and look at the types of sequences that result. In
this case, the event names would not represent singular event instances like last
Tuesday but simply Tuesdays in general. Here we consider only events that
cannot resurrect.

The transition diagram given in Figure 2 can be represented by a 314l x 34
right stochastic matrix M, where each of the rows sum to 1. Let S4 be the
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{0}, {a}, , {6}, {a}

Figure 2: Allowed transitions between A-states that constitute A-
stories.

set of all A-states for some vocabulary A, then M;; represents the transition
probability of going from state s; € Sy to s; € Sy, and Zj M;; = 1. This
matrix will be very sparse, since a small amount of the transitions between
states are allowed to give a well formed string, given by the definition. For the
diagram given Figure 2 , which we subsequently term a ULD automaton, we
have that

'0%%0%0000'
00()%?0%00
0000G% o020
000O0O0OTLO0O
M=100 0000 3 3 3|,
000O0O0OTO0T10
0000O0OTO0O0 1
000O0O0O0OO 0O 1
0 00 0000 0 1

with S4, the set of all A-states for A = {a, b} being

Sa={({a,0},0,0), ({a},{b},0), ({0}, {a}, 0), ({a},0,{b}), (0, {a, b}, 0),
({6},0,{a}), (0, {a}, {b}), (0, {0}, {a}), (0,0, {a, b})}.

The matrix M above represents a ULD automaton with uniform transition
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probabilities. Figure 3 below gives this automaton with transition probabilities
labelled.

Figure 3: ULD automaton with uniform transition probabilities.
Paths that go through a red arc have probability %, while those
that do not have probability %

With these transitions labelled, we can produce probabilities of A-stories
that correspond to probabilities of finite temporality strings, and the Allen
relations they represent. Paths from ({a,b},,0) to (0,0, {a,b}) that go through
a red arc have probability %, while those that do not have probability 2% Thus
we split the 13 Allen relations into two? categories:

e 7 with probability %, namely b, bi, m,mi, s, si, e.
e 6 with probability %, namely o, o1, f, fi,d, di.

These probabilities for the 13 Allen relations do not correspond with those
arrived at by Fernando and Vogel [3]. Before further discussion, it is important
to understand what we mean when we say probability. In [3], the probability
of an Allen relation is understood to mean the proportion of arrangements of
intervals that satisfy it, for some number of intervals, n3. The probability of an
Allen relation here is defined as how likely our ULD automaton is to generate

2We get the same probability distribution for stochastic superposition, when the probability
of choosing any X; from its corresponding state space is uniform.

3Fernando and Vogel also consider these probabilities when time is modelled as a set of
points instead of intervals, and these probabilities change as you increase n.
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the A-story that the Allen relation corresponds to. It is not necessary that these
two methods coincide because both have parameters that when altered produce
different results. In Fernando and Vogel’s case, it is the number of intervals (or
points) that exist. For us, it is these transition probabilities.

Can we justify the choice in uniform transition probabilities?? For some
events, it is very unlikely that they occur at the same time, and more likely
that they begin and end at different times. Take the example where interval a
represents the time during which Alice is alive, and the interval b represents the
time during which Bob is alive. It is much more likely that Alice is born before
or after Bob’s birth, than them being born at the same time. The transitions
({a,b},0,0) ~ ({b},{a},0) and ({a,b},0,0) ~ ({a},{b},0) thus seem much
more likely than ({a,b},0,0) ~ (0,{a,b},0). If we consider being born at the
same time means being born in the same month, then the probability is 1/12.
If we consider it to mean the same day, then the probability drops to 1/365°.
In general, as we increase the detail, the probability that they are born at the
same time drops.

4.2.1 Selection of Transition Probabilities

Figure 4 gives the ULD automaton for a single event. The event a is born at a
given instant in time with some probability p, and dies with probability gq.

start —

Figure 4: The ULD automaton for a single event a.

By running a single ULD automaton for some number of events all in lock-
step, and keeping track of when events live and die, we can produce timelines
of events. By doing this a large amount times, we can generate approximate
distributions and see how likely a single timeline is when we have fixed the birth
and death probabilities, p and q. These birth and death probabilities have the
effect of altering the probability of transitions between A-states. If we assume

*We thank Tim Fernando for this suggestion, as well as the initial idea behind the ULD
construction.
®Disregarding leap years.
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that births are unlikely to happen, then having a low birth probability would
better model the situation of two people being born. The low probability of
birth makes transitions where 2 events are born much less likely than a transi-
tion where only one event is born. In this way we can fine-tune the automaton to
produce timelines that are more in keeping with reality. When we stick with the
view that everything is equally likely, i.e p = 0.5, ¢ = 0.5, we get a distribution
of timelines that corresponds to assigning uniform transition probabilities. Fig-
ure 5 gives the distribution that results after simulating a ULD automaton for 2
events. Clearly visible are the two categories of timelines, those with probability
1/9, and those with probability 1/27, as given previously.

sample 500000 times, p = 0.5,q = 0.5

[1a.bl |
2, blb| |
11a. blal |

I1alel |

[lal bl |
Ilala. bl |

I lala. blb] |
Ilala, blal |

Iblal |

I bla. bl |
| Ibla, bib| |
| Ibla, bla] |

[1bl Jal |

0.00 0.02 0.04 0.06 0.08 0.10
proportion

Figure 5: With p = 0.5, ¢ = 0.5 we have produced a distribution of
timelines that corresponds to uniform transitions between nodes in
the directed graph representation.

This can be extended to three events. Figure 6 gives the probability distri-
bution for timelines of 3 events, again with uniform transition probabilities.

The tallest bars represent those timelines that are the most likely and are
summarized in Table 10. What is clear is that we have similiar classes of
timelines as with when we have only 2 events. The distribution splits the 409
possible timelines into classes of that have the same probability. With 2 events,
there are two classes of timelines, but for 3 events, we can make out from
Figure 6 at least 4 such classes. These classes change of course as we alter the
birth and death probabilities; timelines that were very likely under one model
become highly unlikely in another. When the birth or death probabilities are
low, timelines where events are co-occuring are unlikely to happen, and when
they are high, the most likely timeline is that all events are born and die at the
same time.

Figure 7 gives a more detailed picture. We plot the surface of all possible
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sample 500000 times, p = 0.5, = 0.5

0.0200

0.0175

0.0150

0.0125

ortion

8
£ 0.0100
5

0.0075

0.0050

0.0025

0.0000

Figure 6: Probability distribution of timelines for 3 events and uni-
form transition probabilities. Because there are 409 possible time-
lines, the x -axis labels for each timeline are not shown.

Table 10: 5 of the most likely timelines for 3 events and uniform
transition probabilities.

Timeline Probability
a,b,cla 0.02
b,cla 0.02
a,cl||b 0.02
a,bl|c 0.02
a,b,clb 0.02
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combinations of birth and death probabilites p and ¢, and its height at a given
point represents how likely that timeline is to be generated given the p and ¢
values represented by that point. We can see that the probability of certain
Allen relations are maximised at a given point. For example, the equals relation
between two events is most likely when p and ¢ are very close to 1, and the
finishes relation is most likely when both p and ¢ are around 0.5. The plot
for the equals relation is given in Figure 8 where a clear slope is seen as the
likelihood increases as we increase both p and gq.

What these surface plots also show is how the probabilities change as we
vary p and ¢, and how for some relations they are only highly likely (as given in
yellow) for a small number of values for p and ¢q. The shapes of these surfaces
are of interest, and point to an underlying structure of Allen relations.

I 1bla, bibl |

I1al bl |

Ilala, blbl |

1 1albl |

I bla, bl |

Figure 7: The likeliness of the 7 Allen relations (forgoing their in-
verses) b, d, o, m, s, f, e.
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Figure 8: Likelihood plot for the equals relation.

We had mentioned earlier the idea of representing the ULD automaton and
its transitions between A-states as a matrix, which begs the question of what
is the relation between these birth and death probabilities, and the actual tran-
sition probabilities between A-states? Given in Appendix B is a description of
how to come to the matrix M that encodes birth and death probabilities of
a particular ULD automaton. It is left out of this section since it is not en-
tirely relevant, being an interesting aside into different representations of this
albeit strange unborn, living, dead construction. In effect, it works by taking
bigram counts of transitions between A-states from those strings generated by
simulation; this is explained in further detail in the Appendix.

4.3 Applications to the TimeBank Corpus

These ideas of timeline probabilities can be applied to real world events taken
from the TimeBank corpus [6], a collection of news articles annotated in TimeML
[5], a markup language for marking temporal events and relations in text. The
TLINK tags at the end of the documents give the temporal relations of events as
they are stated in the text.

The following example is taken from the wsj_0555.tml TimeML file. On
extracting some of the TLINK tags and superposing their corresponding finite
temporality strings together, we get the following possible timeline of events:

eid6 | | eidd, eid8 | |t12

What is the probability of this timeline? That depends on the birth and
death probabilities, and Figure 9 shows the probability space of this timeline,
for all combinations of p and q. We see that it is maximised when p is around
0.2 and q is close to 1. This timeline of events is most likely when events are
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unlikely to be born, but once born, the die almost immediately. This is the case
with this timeline, as events rarely occur in more than one interval.

| |eid6| |eid4, eid8]| |t12] |

Figure 9: Likelihood plot of a real life timeline.

Altering the birth and death probabilities is a roundabout method to impose
constraints on the strings generated by a ULD automaton. Choosing an optimal
p and ¢ value maximes the chance that a particular timeline is generated, how-
ever it is not certain that it will be generated. If we know already that events do
not occur, we can impose a low birth probability however this does not rule out
that a timeline with events co-occuring may be generated. What we would like
is to ensure some gaurantee that every timeline generated by a ULD automaton
will follow some constraint i.e. some two events are always related via before.

Pachet et al. [4] outline a process to impose constraints on finite length
markov chains using a constraint satisfication approach to generate song melodies,
and this procedure could be applied here in future work to generate timelines
that follow a some predefined order.

4.4 Conclusion

This section has introduced and described in detail, a novel method that assigns
probabilities to timelines, continuing on from the work of Fernando and Vogel
[3]. We formalised the notion of a ULD automaton and showed its behaviour
as we change its parameters, and applied the model to real world timelines of
events. As an introductory piece, much work exists that can be added including
the development of a constraint system to tailor the types of timelines that the
ULD automaton generates.
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5 Final Conclusions

This thesis has introduced finite temporality, implemented a framework for tem-
poral reasoning, and considered the question of how likely are events to play out
in a given way. Each piece reads like an individual article, but that is not to say
they are disjointed and leave the reader with the fragmented understanding. A
clear web is woven that brings the reader through while still maintaining the
self-containedness of each section.

Section 1 reviews finite temporality and immediately introduces the idea of
how we may extend [3] by simulation. Section 2 goes into detail about how to
implement a framework to manipulate and represent finite temporality strings,
and Section 3 uses this framework to simulate timelines, and answer the question
of timeline probabilites that undercurrents this entire work.

We believe that we have been constructive in answering that question. Novel,
finite state methods were developed and parameterized in such a way so that
account for the nature of events; how likely they are to happen, and for how
long.

However this is still a lot that can be done. Firstly, as described in Section
4, a method of ensuring constraints on the timelines generated by a ULD au-
tomaton using the work of Pachet et al. [4]. A consideration of unique birth
and death probabilities for individual events is a similiar interesting direction
to continue in. Timelines that consider events that do not all have the same
birth probability would be better modelled using different probabilities for event
births and deaths.

5.1 Applications beyond TimeML

Finally, the python library that is developed in Section 3 can have many appli-
cations beyond TimeML. In the sphere of Natural Language Processing, these
strings can be used to produce timeline summaries of text documents, as we
have shown with the TimeML examples. However we can use finite temporality
strings to summarize any kind of temporal knowledge, serving as a sort-of log
file of events. Of course this can be applied to any area in computing e.g net-
work traffic logs, user-service interaction logs, etc. Their compact nature also
provide an appealing visual representation of the logs they may represent.
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A Calculating Probabilities over Interval Names

Listing 1 below gives a python script that returns the probability of the 13
Allen relations over interval names for n number of intervals. This probability
is calculated by finding the proportion of timelines in the superposition of n
unconstrained event strings satisfy a given Allen relation.

from ftstring import FTString

import argparse as ap

from functools import reduce

from operator import and_

E = FTString([set(),{'a','db'},set(])

B = FTString([set(),{'a'},set(),{'b'},set(])
BI = FTString([set(),{'b'},set(,{'a'},set(])

F = FTString([set(),{'b'},{'a','b'},set()])
FI = FTString([set(,{'a'},{'a','b'},set(])
RELATIONS = [E,B,BI,D,DI,0,0I,M,MI,S,SI,F,FI]
NAMES = ['equals', 'before', 'after', 'during', 'contains',
'overlaps', 'overlapped-by', 'meets', 'met-by',
'starts', 'started-by','finishes', 'finished-by'l]
START = 0x61
def main(args):
strings = []
for i in range(args.n):
strings.append (FTString([set () ,{chr (START+i)},set (1))
for r, n in zip(RELATIONS, NAMES):
total = O
count = 0
timelines = reduce(and_, strings)
for t in timelines:
total += 1
if “t.reduct({'a','b'}) == r:
count += 1
print('aRb ({0}) : {1}'.format(n, count/total))

Listing 1: Using the ftstring library to count proportions of Allen
Relations
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B Approximating A-state Transition Probabilities

The python code given in Listing 2 simulates the ULD process of running a
single ULD automaton for events in lockstep. By tracking the events that are
living at each step, and building up the corresponding finite temporality string,
where the living set L; at the i-th step is the i-th interval set «a; in the finite
temporality string.

The string distributions given in Section 4 are the result of running the
function uld_process in Listing 2 500,000 times for a some given p and ¢ values,
where the proportion of times a given string was generated with these specific
birth and death probabilities is printed in bold black text beside the string’s
corresponding blue bar.

Of course, every string generated by the ULD automata process follows an
A-story. By taking the bigram counts of state transitions, we can approximate
the value for P(sj|s;), the transition probability from state s; € S4 to state
s; € Sa. The process for doing so is described in detail subsequently.

Every call to uld_process generates a single string, s which corresponds to
a given unique A-story. The probability P(s;|s;) is given by

C(SZ’, Sj)

P(ssls0) = =S

We divide the total amount of times the A-state s; is preceded by s; by the
total amount of times state s; appears. This gives an idea of how often a given
transition is taken. These probabilities are then strengthened or weakened by
the birth and death probabilites. Certain strings are produced more often or less
often by the ULD automaton process, depending on p, and g. By updating the
transition probabilities using every string generated, certain transitions will be
strengthened i.e. have a larger probability, by the fact that some strings occur
more frequently than others, and other transitions will be much less likely. With
this in mind, we can recreate the transition matrix M given previously where
the entry M;; in the matrix represents P(s;|s;).

The ULD process must be simulated many times to get accurate approxima-
tions of transition probabilities. Let My be the approximate transtion matrix
after N runs of the ULD automaton, we have that My, N — oo is the true
transition probability matrix. Listing 3 shows the output of a program that cal-
culates My and we see as we increase N, My gets closer to the true transition
probabilities.
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from ftstring import FTString
import random

def uld_process(A,p,q):

unborn = A

living = set()

dead = set()

string = FTString()

string.add(living)

while dead != A:
newly_living = set()
newly_dead = set()
for u in unborn:

if random.random() < p:
newly_living.add(u)
for 1 in living:
if random.random() < q:
newly_dead.add (1)
if len(newly_living) == 0 and len(newly_dead) == O:
continue
unborn = unborn - newly_living
living = living | newly_living
living = living - newly_dead
dead = dead | newly_dead
string.add(living)

return string

Listing 2: python code for simulating the ULD process for some set
of events A. We run the single automaton for each event and use
python’s random number generator to decide when an event lives
and dies. The ftstring library described previously is used to build
the corresponding finite temporality string.
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0. 0.
0. 0.
0. 0.
0. 0.
0. 0.347
0.382 0.321
0. 0.291
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.339
0.333 0.328
0. 0.316
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.

O O O O O O O o o O O O O O O O oo

O O O O O O O oo

.25

.359

.34

O O OO O+ O OO O O OO O O O O

O O OO O O O O

.3563

.542

.297

.355

.339

.338

O O O OO O O O O OO+ OO O O O

O OO OO O OO

.25

.35

.313

.344

.328

Listing 3: Approximation of My
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O r Pk O OO O O O O Pk O OO O O O

O Pk O OO O O O

.208

.333

.334
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