
Two Models are Be�er than One: FL for Next Word Prediction Is Not Private
Mohamed Suliman

Trinity College Dublin

Introduction

A notable real-world deployment of FL is within Google’s Gboard, where FL is used to train the Next
Word Prediction (NWP) model that provides the suggested next words that appear above the keyboard
while typing. We present two attacks that reconstruct the original training data, i.e. the text typed by a
user, from the FL parameter updates with a high degree of �delity. We also show that adding Gaussian
noise to the transmitted updates, which has been proposed to ensure local Di�erential Privacy (DP),
provides little defence unless the noise levels used are so large that the utility of the model becomes
substantially degraded.

Word Recovery Attack

In next word prediction the input to the RNN is
echoed in it’s output. The sign of the output loss
gradient directly reveals information about the words
typed by the user, which can then be recovered eas-
ily by inspection. This key observation is the basis of
our word recovery attack.

word 𝑖 (𝜃1 − 𝜃0)𝑖
learning 7437 -0.0009951561
online 4904 -0.0009941629
is 209 -0.000997875
not 1808 -0.0009941144
so 26 -0.0009965639

private 6314 -0.0009951561
Table: Values of the final layer parameter di�erence at the
indices of the typed words. Produced a�er training the model
on the sentence “learning online is not so private”,
𝐸 = 1, 𝐵 = 1, 𝜂 = 0.001. These are the only indices where
negative values occur.

To execute this attack in practice, simply subtract the
�nal layer parameters of the current global model
𝜃0 from those of the resulting model trained on the
client’s local data, 𝜃1. The indices of the negative val-
ues reveal the typed words. Suppose the client’s local
data consists of just the one sentence “learning on-
line is not so private”. We then train model 𝜃0 on this
sentence for 1 epoch, with a mini-batch size of 1, and
SGD learning rate of 0.001 (FedSGD), and report the
the values at the negative indices in Table 1.

Sentence Reconstruction Attack

We begin by selecting 𝑥0 equal to the start of sentence
token <S> and 𝑥1 equal to the �rst word from our set
of reconstructed words, then ask the model to gen-
erate 𝑦2 = 𝑃𝑟 (𝑥2|𝑥0, 𝑥1;𝜃1). We set all elements of 𝑦2
that are not in the set of reconstructed words to zero,
since we know that these were not part of the local
training data, renormalise𝑦2 and then select the most
likely next word as 𝑥2. We now repeat this process for
𝑦3 = 𝑃𝑟 (𝑥3|𝑥0, 𝑥1, 𝑥2;𝜃1), and so on, until a complete
sentence has been generated. We then take the sec-
ond word from our set of reconstructed words as 𝑥1
and repeat to generate a second sentence, and so on.
The Log-Perplexity of a sequence 𝑥0, ..., 𝑥𝑡 , is de�ned
as

𝑃𝑃𝜃 (𝑥0, ..., 𝑥𝑡) =
𝑡∑︁

𝑖=1
(− log 𝑃𝑟 (𝑥𝑖 |𝑥0, ..., 𝑥𝑖−1;𝜃 )),

and quanti�es how ‘surprised’ the model is by the se-
quence. Those sentences that report a high perplex-
ity for 𝜃0 but a comparatively lower one for 𝜃1 reveal
themselves as having been part of the dataset used to
train 𝜃1. Each generated sentence is scored by their
percentage change in perplexity:

𝑆𝑐𝑜𝑟𝑒 (𝑥0, ..., 𝑥𝑡) =
𝑃𝑃𝜃0(𝑥0, ..., 𝑥𝑡) − 𝑃𝑃𝜃1(𝑥0, ..., 𝑥𝑡)

𝑃𝑃𝜃0(𝑥0, ..., 𝑥𝑡)
.

By selecting the top-𝑛 ranked sentences, we select
those most likely to have been present in the train-
ing dataset.

Possible Defences

The privacy situation may not be quite as bad; reconstructed text is e�ectively redacted due to the <UNK>

token. Model dictionary choice thus plays a critical role. Character level language models also would likely
make our attack much harder to perform.

Performance against Vanilla FL

(a) 𝐸 = 50 epochs (b) 𝐸 = 100 epochs (c) 𝐸 = 1000 epochs

Figure: Reconstruction performance. Each point corresponds to a di�erent dataset colour coded by it’s size. The y-axis gives the average Levenshtein ratio
of the reconstructed sentences. The x-axis is the F1 score between the tokens used in the reconstructed sentences and the ground truth. The closer a
point is to the top-right corner, the closer the reconstruction is to perfect

Performance against FL with Local DP

(a) (b) (c)

Figure: Word recovery behaviour when Gaussian noise is all to local FL updates: (a) vanilla word recovery performance, (b) disparity of magnitudes
between those words that were present in the dataset and those ’noisily’ flipped negative, (c) word recovery performance when filtering is used.

(a) (b)

Figure: Sentence reconstruction performance with local DP for FedAveraging. show the reconstruction performance for di�erent datasets colour coded by
their size for DPSGD-like training, with 𝐸 = 100, 𝐵 = 32. Here we see no real e�ect in our results compared to the noise-free case.


