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Abstract—Federated Learning is now widely deployed by
Google on Android handsets for distributed training of neural
networks. While Federated Learning aims to avoid sharing
sensitive user data with Google, in this paper we show that
when used for GBoard next word prediction Federated Learning
provides little privacy to users. Namely, we demonstrate that
the words typed by a user can be quickly and accurately
reconstructed from the gradients of the GBoard LSTM used
for next word prediction. Use of mini-batches does not protect
against reconstruction.

I. INTRODUCTION

In [1] Google introduced Federated Learning for privacy-
enhanced distributed training of neural networks. Federated
Learning is now widely deployed on Android mobile handsets,
and in particular is used for next word prediction in Google’s
GBoard keyboard app [2] which, according to the Google Play
store, is installed in more than 1 Billion devices'. In Federated
Learning a central server collects gradient vectors from mobile
handsets running the model, it executes a stochastic gradient
descent step to update the model parameters and then pushes
the new parameter values to the mobile handsets. This process
repeats until the parameters are judged to have converged, a
specified number of iterations have been completed etc. By
keeping the training data on the mobile handsets and only
sharing gradient information, the hope is that a degree of
privacy is gained. However, there has been little formal privacy
analysis of Federated Learning.

In this paper we show that when used for GBoard next
word prediction Federated Learning provides little privacy to
users. Namely, we demonstrate that the words typed by a user
can be quickly and accurately reconstructed from the gradients
of the GBoard LSTM used for next word prediction. Use of
mini-batches does not protect against reconstruction.

Key to the lack of privacy is that in next word prediction
the neural net input is echoed by the neural net output. That
is, in the next word prediction task the output of the neural
net aims to match the sequence of words typed by the user,
albeit with a shift one word ahead. The sign of the output loss
gradient directly reveals information about the words typed by
the user, which can then be reconstructed by inspection (there
is no need for any complex processing).

We provide more details below, but briefly illustrate the
nature of the information leakage here. Let D be a dictionary
of V words, each typed word is mapped to an entry in D
and the next word prediction is a vector § € [0,1]"" whose
i’th element ¢; is the probability that the next word will be
the ’th dictionary entry. When a softmax output layer is used

i = sv——=; with vector z € RY the raw logits. Suppose the
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the word typed by the user simply by inspecting the sign of
the loss derivatives. This is illustrated schematically in Figure
1. Federated Learning shares the derivatives of the loss with
respect to model parameters, rather than the derivatives with
respect to the logits y;, but the derivatives of parameters in
the penultimate output layer are enough.

> (0. Hence, we can infer the index i* of

("not", "so", "private")

FC Layer

Fig. 1. Illustrating how sign of gradient elements can leak words typed.
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Previous work on information leakage by Federated Learn-
ing has mainly focused on object detection tasks, e.g. see [3],
[4], [5]. The neural network output is an object label (e.g. cat,
dog) and the attack aims to reconstruct the input image only
from gradient information. The attack is typically formulated
as an optimisation problem and solved using gradient descent.
Successful attacks have been demonstrated for standard neural
nets and image datasets. However, because in next word
prediction the neural net input is echoed by the output we
are able to perform much faster, more robust attacks that are
difficult to defend against. We demonstrate the effectiveness
of these attacks against a widely deployed LSTM neural net
from GBoard.

II. PRIVACY THREAT MODEL

The transmission of user data from mobile handsets to
back-end servers is not intrinsically a breach of privacy.
For instance, it can be useful to share details of the device
model/version and the locale/country of the device when
checking for software updates. This poses few privacy risks if
the data is common to many handsets and therefore cannot be
easily linked back to a specific handset/person [6], [7].

Two major issues in handset privacy are (i) release of
sensitive data, and (ii) de-anonymisation i.e. linking of data
to a person’s real world identity.

Release of sensitive data. What counts as sensitive data is
a moving target, but it seems clear that the words entered by
users, e.g. when typing messages, writing notes and emails,
web browsing and performing searches, may well be sensitive.
It is not just the sentences typed which can be sensitive but
also just the list of words used (i.e. even without knowing the
word ordering) since this can be used for targeting surveillance
via keyword blacklists [8]. It is also important to note that
data which is not sensitive in isolation can become sensitive
when combined with other data, and this is a particular concern
with regard to large companies that operate mobile payment
services, supply web browsers, run advertising platforms etc.

De-anonymisation. Android handsets can be directly tied
to a person’s real identity in several ways, even when a user
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takes active steps to try to preserve their privacy. Probably
most relevant here is via the Android ID, since most Google
telemetry is tagged with this. Via other data collected by
Google Play Services the Android ID is linked to (i) the
handset hardware serial number, (ii) the SIM IMEI (which
uniquely identifies the SIM slot) and (iii) the user’s Google
account [9], [10]. When creating a Google account it is
necessary to supply a phone number on which a verification
text can be received. For many people this will be their own
phone number. Use of Google services such as buying a paid
app on the Google Play store or using Google Pay further
links a person’s Google account to their credit card/bank
details. A user’s Google account, and so the Android ID, can
therefore commonly be expected to be linked to the person’s
real identity.

III. RELATED WORK

The use of Federated Learning for next word prediction in
Google’s GBoard app is considered in [2] and the structure
of the LSTM that we extracted from the app matches the
description in that paper. The Long Short Term Memory
(LSTM) recurrent neural network was introduced in [11], and a
variant termed the Coupled Input Forget Gate (CIFG) LSTM
was developed in [12]. CIFGs include less parameters that
need to be trained than a regular LSTM, and are thus appealing
for mobile handset deployment, where network bandwidth and
storage resources cannot be guaranteed.

Since being introduced by [1], Federated Learning has
attracted a great deal of interest and generated a growing body
of literature, in particular about the security challenges it poses
[13], [14], [15]. The attack presented herein can be classed
as an inference attack, where training inputs and labels are
inferred from the model updates. Information leakage from
the gradients of neural nets used for object detection appears
to have been initially investigated in [3], which proposed
a so-called Deep Leakage from Gradients (DLG) method
for input image reconstruction. This work was subsequently
extended by [5], [4]. In particular, [4] demonstrated effective
input image reconstruction even for mini-batch sizes up to 48
images. Other inference attacks attempt to infer a particular
data point’s membership in the training data [16], [17], [18],
as well properties of other participants’ training data [17].

IV. GBOARD NEXT WORD PREDICTION LSTM

A. LSTM Software Version & Tensorflow Implementation

We used a rooted Google Pixel 2 running Android 11 and
Google GBoard app version 10.5.03.367007960. We extracted
the files nwp.csym, nwp.csym2 and nwp.uint8.mmap.tflite
from folder files/superpacks/next-word-predictor/
tlite-nwp-45c6579035e9df4ffe5c1246f8d5615d  within the
app private data directory. The file nwp.csym?2 contains the
LSTM dictionary containing V' = 9502 words. The dictionary
is stored in MARISA-Trie format?> with an additional pre-
pended file header. The file nwp.uint8.mmap.tflite is the
LSTM, stored in TensorFlow Lite format’. The publicly
available version of TensorFlow Lite does not support
training or the calculation of model derivatives. We therefore
ported the TensorFlow Lite model to TensorFlow, verifying
that both generated identical outputs for the same inputs.
The weights in the TensorFlow Lite model are tagged with
descriptive labels, and are used to create the replicated model
in TensorFlow.

Fig. 2. Schematic of LSTM architecture. LSTM layer takes as input dense
vector x¢ representing a typed word and outputs a dense vector h¢. This output
is then mapped to vector z; of size 9502 (the size of the dictionary) with the
value of each element being the raw logit for the corresponding dictionary
word. A softmax layer then normalises the raw z; values to give a vector ¢
of probabilities.

B. LSTM Architecture

Input words are first mapped to a dictionary entry, with
a special <UNK> entry used for words that are not in the
dictionary. The index of the dictionary entry is then mapped
to a dense vector of size D = 96 using a lookup table (the
dictionary entry is one-hot encoded and then multiplied by
an RP*V weighting matrix W7) and applied as input to an
LSTM layer with 670 units i.e. the state C; is a vector of
size 670. The LSTM layer uses a CIFG architecture without
peephole connections, illustrated schematically in Figure 2.
The LSTM state C is linearly projected down to an output
vector hy of size D, which is mapped to a raw logit vector z; of
size V via a weighting matrix W and bias b. This extra linear
projection is not part of the orthodox CIFG cell structure, and
is included to accommodate the model’s tied input and output
embedding matrices [19]. A softmax output layer finally maps
this to an [0, 1]V vector §; of probabilities, the i’th element
being the estimated probability that the next word is the ¢’th
dictionary entry.

C. Loss Function

Following [2] we use categorical cross entropy loss over the
output and target labels.

V. THE ATTACK: GRADIENT INFORMATION LEAKAGE
A. Recovering The Words Typed

After the user has typed ¢ words the output of the neural
net is next word prediction vector ¢,
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with raw logit vector z; = Wh; + b, where h; is the output
of the LSTM layer. The cross-entropy loss function for text

consisting of T words is Jy.7(0) = Zthl J¢(0) where
ez (0)
S es®

where 7 is the dictionary index of the ¢’th word entered by
the user and 6 is the vector of neural net parameters (including

Ji(0) = —log

2See, for example, https:/android.googlesource.com/platform/external/
marisa-trie/

3https://www.tensorflow.org/lite/
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the elements of W and b). Differentiating with respect to the
output bias parameters b we have that,
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It follows that for words k& which do not appear in the text
8J i > 0. Also, assuming that the neural net has been trained
to have reasonable performance then e** will tend to be small
for words £ that do not appear next and large for words which
do. Therefore for words +* that appear in the text we expect
that 22 < 0.

Example Suppose the input to the neural net is the
sentence “this online learning is not so private”. Calculating
the gradients ng L.k = 1,...,V, sorting the values in
descending order *and selectlng the elements Wlth negatlve
values yields the following (k’th word, dé L)  pairs:
(“learning”,-0.9997006)  (“private”,-0. 9994907) (“onhne”
0.99600935) (“not”,-0.9627077) (“s0”,-0.94802666) (“is”
0.78382504). All other words in the dictionary have
non-negative gradients.

This observation is intuitive from a loss function min-
imisation perspective. Typically the estimated probability ;=
for an input word will be less than 1. Increasing g;» will
therefore decrease the loss function i.e. the gradient is negative.
Conversely, the estimated probability ¢; for a word that does
not appear in the input will be small but greater than 0.
Decreasing ¢; will therefore decrease the loss function i.e.
the gradient is positive.

While we focus on the bias parameters b here since they
yield particularly simple expressions, similar analysis applies
to the W parameters and can also be expected to apply to other
forms of penultimate output layer. The key is that because the
output g, aims to echo the words typed by the user, the gradient
of the loss with respect to parameters in the penultimate layer
will always tend to directly reveal information about the words
typed (unlike in the case of object detection where the neural
net output is just the object label and so reconstruction of the
full input image is an additional, challenging, step).

B. Recovering The Sentences Typed

The approach above extracts the set of words typed by
inspection, however this gives no indication of the original
ordering of words so as to reconstruct the original sentences
typed. For mini batches consisting of one sample, and short
sentences, a brute force method is sufficient to reconstruct the
original sentence.

Given that we have extracted n tokens, we rank all n!
permutations of these tokens based off of their gradient loss.
This is defined as the L2 norm between the original FL
gradient, and the gradient generated when training the model
with the sentence represented by the current permutation. This

loss function is used in [3] to guide the gradient descent
optimization as part of the Deep Leakage from Gradients
algorithm.

Oh k...i'm watching here:)

<S> oh k im watching here

Fig. 3. Here we give a sample reconstruction. The first line gives the
original sentence, and the second line gives the attempted reconstruction,
after extracting the tokens from the gradient information and finding the best
permutation of these tokens via brute force. Note the start of sentence token
<S> present in the reconstruction.

Figure 3 gives an example of the kind of reconstruction that
is possible with this attack. With a mini-batch size of one, and
short sentences of words contained in the model’s vocabulary,
reconstruction is almost perfect, albeit missing punctuation.
This approach does not scale well for larger mini-batch sizes
or longer sentences as the number of possible number of
permutations increases. Further research is needed to look into
more efficient sentence reconstruction.

VI. PERFORMANCE EVALUATION
A. Datasets Used

To evaluate the effectiveness of our attacks we use two
datasets: (i) the UMass Global English on Twitter Dataset
which contains 10,502 tweets, randomly sampled from pub-
licly available geotagged Twitter messages [20] and (ii) a
corpus of 63,632 non-Spam SMS messages [21].

B. Performance Metrics

To evaluate performance we use two metrics. Firstly, the
proportion of words from the original text that the attack
described in Section V-A manages to correctly reconstruct.
Secondly, a modified version of the Levenshtein ratio i.e. the
normalised Levenshtein distance [22] (the minimum number
of word level edits needed to make one string match another)
between the original text and the sentences reconstructed using
the attack in Section V-B. A Levenshtein ratio closer to 100 in-
dicates a greater match between the original and reconstructed
sentences. For example, given an original sentence of “hello
how are you”, the reconstructions “how hello are you” and
“hello how you are” both have a Levenshtein ratio of 76, as
they are off by one word.

C. Mini-Batches

We evaluate performance for a range of mini-batch sizes
from 1 up to 48. A mini-batch of size n consists of n
separate messages from the selected dataset. At the start of
each separate message the LSTM is initialised, the words for
the message are input and the next word predictions noted.
The sum-gradient over the » messages in a mini-batch is then
used for our reconstruction attack. We consider both situations
where (i) all of the messages in a mini-batch have the same
number of words and (ii) where the messages may have
different numbers of words in which case shorter messages
are padded with the <UNK> token to match the length of the
longest message in the batch (this is necessary to ensure that
the gradient vectors are the same size and so can be summed).

D. Measurements

Table I shows the measured accuracy at reconstructing the
words contained in a mini-batch of messages vs the number of
messages in the mini-batch i.e. the mini-batch size. Note that
since the input is echoed by the model’s output, but shifted one
word ahead, the first word is not recoverable via these means.
However, since the first word is always the start of sentence



TABLE I
PROPORTION OF WORDS CORRECTLY RECONSTRUCTED.

[ Twitter [ SMS |

Messages with 4 words

Mini-Batch Size | Accuracy Mini-Batch Size | Accuracy

(#batches) (#batches)

T (249 batches) 0.947 T (T55 batches) 0.985

4 (62 batches) 0.975 4 (38 batches) 0.976

8 (25 batches) 0.977 8 (17 batches) 0.983

16 (15 batches) 0.965 16 (9 batches) 0.957

32 (7 batches) 0.936 32 (4 batches) 0.933

48 (5 batches) 0.907 48 (3 batches) 0.918
Messages with § words

I (405 batches) 0.913 T (335 batches) 0.977

4 (101 batches) 0.966 4 (83 batches) 0.965

8 (50 batches) 0.961 8 (41 batches) 0.948

16 (24 batches) 0.933 16 (19 batches) 0.926

32 (12 batches) 0.908 32 (10 batches) 0.875

48 (8 batches) 0.893 48 (6 batches) 0.858

[ Twitter Messages with 10 or more words |

T (2724 batches) 0.935

4 (681 batches) 0.961

8 (340 batches) 0.938

16 (170 batches) 0.917

32 (85 batches) 0.893

48 (56 batches) 0.885

TABLE II
4 WORD SMS AND TWITTER SENTENCE ORDERING RESULTS WITH BATCH
SIZE 1.

Levenshtein ratio
97.161 (78.7% perfect)
90.173 (54.2% perfect)

Dataset (batch size, #batches)
SMS (1, #1353)
Twitter (1, #249)

token <S>, this fact is inconsequential, as we are only unable
to retrieve <S>, which we assume to be included as part of
a training sentence. Observe also that the accuracy remains
the same as the mini-batch size and messages length increase,
highlighting that use of mini-batches is an ineffective defence
against this attack.

To boost performance, sentences are passed through a spell
checker to find mispelled words that if spelled correctly, would
represent a word that is part of the model’s vocabulary. This
allows the attack to reconstruct the word that was typed (albeit
incorrectly), instead of just the unknown token <UNK>.

Table II reports the proportion of sentences reconstructed
perfectly* by the brute force attack described in Section V-B.
We provide results for a mini-batch size of 1 and for 4
word messages from both datasets. The Levenshtein ration
measures message similarity (with 100 being considered a per-
fect match). SMS message reconstruction reports an average
Levenshtein ration of 97.161, over 155 different messages,
with 78.7% of them being reconstructed perfectly, while most
other being off by at most 1 word placement. Twitter message
reconstruction is slightly lower, however this is due to the
high number of repetition of the unknown character, <UNK>.
This corresponds to the fact that tweets often consist of unique
usernames, links, hashtags, emojis, etc.

VII. SUMMARY AND CONCLUSIONS

We show that when used for GBoard next word prediction
Federated Learning provides little privacy and that the words
typed by a user can be quickly and accurately reconstructed.
The attack itself appears to be difficult to defend against.
Use of mini-batches (i.e. combining multiple messages) is
demonstrated to be ineffective. Sampling the gradient vector
and sending only a subset of elements is unlikely to be
effective due to the large size of the gradient vector relative to
the average message size i.e. to provide a reasonable defence

4Excluding the first word, the start of sentence token <S>.

the sampling fraction would have to be so low as to disrupt
neural network training. Adding noise to the gradients is also
likely to be problematic since our attack just relies on sign
information and noise that disrupts the attack is also likely
to disrupt neural network training. Combining gradients from
multiple handsets has been proposed to improve privacy but
requires co-ordination between handsets which can be difficult
to achieve in practice.
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